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Abstract

We describe the one-dimensional SASE FEL instability
using the wake approach. First, we obtain an expression
for the longitudinal 1-D wake in a helical undulator. We
then show that taking into account the retardation effect
in the Vlasov equation with the proper wake leads to the
correct result for the FEL instability, in agreement with the
traditional theory.

INTRODUCTION

Coherent instabilities arise when the electromagnetic
field produced by an electron beam, interacts with the en-
vironment, generating new fields which act back on the
electrons. It is conventional to describe such phenomena
by using the Vlasov equation, with the electromagnetic
forces represented by a wakefield [1]. In the high-gain
free-electron laser (FEL), the radiation emitted by an elec-
tron beam passing through a long undulator acts back on
the electrons. This interaction is often described using the
Vlasov-Maxwell equations [2–4]. In this paper, we discuss
the FEL using the wakefield approach and emphasize the
necessity of including the effects of retardation [5].

WAKE IN THE UNDULATOR

Consider a helical undulator with the undulator parame-
ter K . A beam of density n0 (per cubic cm) and relativis-
tic factor γ propagates along the axis of the undulator. The
transverse velocity v⊥ of a particle in the undulator is equal
to

v⊥ = v⊥ (ex cos kws + ey sin kws) , (1)

where

v⊥ = c
K

γ
,

with kw = 2π/λw, λw the undulator period, ex and ey the
unit vectors in x and y directions, respectively, and s the
distance along the undulator. The longitudinal velocity of
the particle in the undulator is vz ≈ c[1−(1+K2)/(2γ2)],
corresponding to the longitudinal gamma-factor γ z

γz =
(

1 − v2
z

c2

)−1/2

=
γ√

1 + K2
.

To derive a wake in 1-D theory we consider an infinitely
thin sheet of electrons in the x − y plane with the charge

density σ per unit area. The longitudinal position of the
sheet is s = vzt. Due to the transverse motion, the sheet
radiates electromagnetic field. To find the radiation field,
we first calculate it in the beam frame. In this frame, the
sheet rotates with the frequency γzωw, where ωw = ckw,
and its transverse velocity is

v̂⊥ = γzv⊥
[
ex cos(γzωw t̂) + ey sin(γzωw t̂)

]
, (2)

where the hat indicates variables in the beam frame. The
sheet radiates two circularly polarized plane electromag-
netic waves—one in the direction of the beam propagation,
and the other in the opposite direction—with equal ampli-
tudes and the frequency γzωw. From the symmetry of the
problem, the directions of the magnetic field vector in these
waves at the location of the sheet (s = vzt) are opposite. To
find the amplitude of the magnetic field, we use Ampere’s
law:

2Ĥ(t)|sheet =
4π

c
σv̂⊥ × ez ,

from which it follows that the amplitude Ĥ0 of the field is

Ĥ0 =
2π

c
σv̂⊥ =

2π

c
γzσv⊥ .

Note that the amplitude of the electric field Ê0 is also equal
to Ĥ0. Returning to the lab frame we find that the fre-
quency of the wave propagating in the forward direction
is

ω0 = 2γ2
zωw = 2

γ2

1 + K2
ωw , (3)

and the amplitudes of the electric and magnetic fields are

E0 = H0 = 2γzĤ0 =
4π

c
σv⊥γ2

z .

The electric field in this wave is

E(s, t) = −E0[ex cos(ω0(t − s/c))
+ ey sin(ω0(t − s/c))] . (4)

The magnetic and electric fields in the backward wave, in
the limit γz � 1, are much smaller than H0, and we neglect
them below in the calculation of the wake.

To calculate the longitudinal wake, we consider a test
sheet of particles, with a unit charge per unit area, moving
in front of the source sheet in the undulator, at distance z,
with the same velocity given by Eq. (1). For the test sheet
we have s = vzt + z. The radiated electromagnetic wave



will exert a force on the test sheet, and the work of the force
per unit time (and per unit area) is

E

(
s,

s − z

vz

)
· v⊥(s)

≈ −4π

c
σv2

⊥γ2
z cos(ω0z/vz)

= −4πσ
K2

1 + K2
cos(ω0z/vz) , (5)

where we used Eqs. (2), (4), and (3). If we define the lon-
gitudinal wake w(s, z) as the energy loss of the test sheet
per unit area per unit length of path and per unit σ, then

w(s, z) =




2κ cos
(

ω0z
vz

)
, for 0 < z < c−vz

c s

κ, for z = 0
0, otherwize

,

(6)
where the loss factor κ is:

κ = 2π
K2

1 + K2
. (7)

This wake is localized in front of the sheet because the ra-
diated wave overtakes the particles. Positive wake corre-
sponds to the energy loss, and negative wake means an en-
ergy gain. Note that the wake is a function of two variables:
the distance z between the source and the test sheets, and
the current position s of the source.

The product κσ2 is the spontaneous radiation emitted
per unit area per unit length of path. It is interesting to
note, that usually in accelerators the longitudinal wake is
associated with the longitudinal component of the electric
field Ez , with the energy gain for the test particle given by
eEzvz . In undulator, as expressed by Eq. (5), the work
is done by the transverse component of the electric field
coupled with the wiggling motion of the particle.

VLASOV EQUATION

Having derived the longitudinal wake, we can now apply
the standard formalism of accelerator theory to describe dy-
namics of the beam [1]. The one-dimensional Vlasov equa-
tion in a coasting beam approximation is

∂f

∂s
− ηδ

∂f

∂z
− r0

γ

∂f

∂δ

×
∫ ∞

−∞
dz′

∫ ∞

−∞
dδ′w(s, z − z′)f(δ′, z′, s) = 0 , (8)

where η is the slip factor per unit length, δ = ∆γ/γ is the
energy deviation relative to the nominal value γmc2, and
r0 = e2/mc2 is the classical electron radius. The distri-
bution function f is normalized so that

∫
fdzdδ gives the

particle density (per cm3).
It turns out, however, that the standard form of the

Vlasov equation (8) should be corrected by taking into ac-
count the retardation effect in the last term on the left hand

side1:∫ ∞

−∞
dz′

∫ ∞

−∞
dδ′w(s, z − z′)f(δ′, z′, s) → (9)

∫ ∞

−∞
dz′

∫ ∞

−∞
dδ′w(s, z − z′)f

(
δ′, z′, s − c

z − z′

c − vz

)
.

Indeed, the wake that is generated at coordinate z ′ moves
relative to the beam with the velocity c−vz , and if it reaches
the point z at time t, it should have been emitted at position
s − c(z − z′)/(c − vz). Taking into account that in the
undulator

η = −1 + K2

γ2
, (10)

we obtain

∂f

∂s
+

δ(1 + K2)
γ2

∂f

∂z
− r0

γ

∂f

∂δ

∫ ∞

−∞
dz′

∫ ∞

−∞
dδ′

× w(s, z − z′)f
(

δ′, z′, s − c
z − z′

c − vz

)
= 0 . (11)

It is convenient to introduce new variables: s̄ = kws and
θ = ω0z/vz and consider f as a function of s̄ and θ. We
linearize Eq. (11) assuming that f = f0(δ) + f1(δ, z, s)
with |f1| � f0. Using notation f0(δ) = n0h(δ), we find
[2–4]

∂f1

∂s̄
+ 2δ

∂f1

∂θ
− (2ρ)3h′(δ)

∫ θ

θ−s̄

dθ′ (12)

×
∫ ∞

−∞
dδ′ cos(θ − θ′)f1 (δ′, θ′, s̄ − θ + θ′) = 0 ,

where ρ is the Pierce parameter [6] given by

(2ρ)3 =
2n0κcr0

kwγω0
=

2πK2r0n0

γ3k2
w

, (13)

and we have used the relation

k0

kw
=

vz

c − vz
.

FEL DISPERSION RELATION

We introduce a new variable s̄′ = s̄− θ + θ′, and rewrite
Eq. (12) in the following form

∂f1

∂s̄
+ 2δ

∂f1

∂θ
− (2ρ)3h′(δ)

∫ s̄

0

ds′ (14)

×
∫ ∞

−∞
dδ′ cos(s̄ − s̄′)f1 (δ′, θ − s̄ + s̄′, s̄′) = 0 .

Assume sinusoidal modulation of the distribution function
with frequency ω, f1 ∝ eiωz/c = ei(1+ν)θ, where ν =
(ω − ω0)/ω0. We then define functions Φν and Kν such
that

f1(δ, θ, s̄) = ei(1+ν)θΦν(δ, s̄) ,

Kν(s̄) = e−i(1+ν)s̄ cos s̄ .

1A similar modification of the Vlasov equation is invoked in the
derivation if a single-mode CSR instability in rings, [5].



Then Eq. (14) takes the form

∂Φν

∂s̄
+ 2iδ(1 + ν)Φν = (2ρ)3h′(δ)

∫ s̄

0

ds̄′Kν(s̄ − s̄′)

×
∫ ∞

−∞
dδ′Φν(δ′, s̄′) = 0 . (15)

Laplace transforming Eq. (15) we find

−Φν(δ, 0) + [β + 2iδ(1 + ν)]Φ̃ν(δ, β)

= (2ρ)3h′(δ)K̃ν(β)
∫ ∞

−∞
dδ′Φ̃ν(δ′, β) , (16)

where

Φ̃ν(δ, β) =
∫ ∞

0

ds̄e−βs̄Φν(δ, s̄) ,

K̃ν(β) =
∫ ∞

0

ds̄e−βs̄Kν(s̄)

=
1
2

[
1

β + iν
+

1
β + iν + 2i

]
. (17)

Dividing Eq. (16) by β + 2iδ(1 + ν) and integrating over
δ yields

∫ ∞

−∞
dδΦ̃ν(δ, β) =

∫ ∞
−∞ dδ Φν(δ,0)

β+2iδ(1+ν)

1 − (2ρ)3K̃ν(β)
∫ ∞
−∞ dδ h′(δ)

β+2iδ(1+ν)

.

The dispersion relation that defines the frequency ν of
modes is given by zeros of the denominator on the right
hand side of this equation:

(2ρ)3K̃ν(β)
∫ ∞

−∞
dδ

h′(δ)
β + 2iδ(1 + ν)

= 1 . (18)

Rapid growth will be seen to correspond to |ν| � 2ρ and
β ∼ 2ρ. The second term in expression for K̃ν on Eq. (17)
is not resonant and can be neglected, which gives

1
2
(2ρ)3

1
β + iν

∫ ∞

−∞
dδ

h′(δ)
β + 2iδ

= 1 ,

where we neglected ν relative to unity in the denominator
of the integrand of Eq. (18).

For a cold beam, h(δ) = δ(δ) (where the first δ stands
for the delta-function), and we obtain

β2(β + iν) = i(2ρ)3 (19)

in agreement with conventional result of the FEL theory
[2–4].

DISCUSSION

In order to clarify the effect of retardation introduced in
Eq. (9), we will analyze here the dispersion relation that
would result from using the Vlasov equation Eq. (8), with-
out retardation. In this analysis, we will neglect the s de-
pendance of the wake in Eq. (6). Linearizing Eq. (8), and

assuming the dependence f1(δ, z, s) ∝ eβkws+i(1+ν)ω0z/c

we obtain a well known Keil-Schnell dispersion relation [1]
for a coasting beam instability:

cr0

γ
Z

(
ω0(1 + ν)

c

) ∫ ∞

−∞

dδ(∂f0/∂δ)
βkw − iηδ(1 + ν)ω0/c

= 1 ,

(20)
where the impedance Z(k) is related to the wake by the
following equation

Z(k) =
1
c

∫ ∞

−∞
w(z)e−ikzdz .

For a cold beam, with the distribution function f0 =
n0δ(δ), Eq. (20) reduces to

− iηn0r0ω0(1 + ν)
γβ2k2

w

Z

(
ω0(1 + ν)

c

)
= 1 . (21)

To illustrate our point, we will use the wake given by
w = 2κ cos (ω0z/vz) for arbitrary z > 0 (that is we neglect
the condition 0 < z < c−vz

c s in Eq. (6)). We then find

Z(k) =
2κ

c

∫ ∞

0

cos
(ω0z

c

)
e−ikzdz ≈ iκ

c

1
k − ω0/c

,

(22)
where we left only the resonant term, dominant when kc is
close to the FEL frequency ω0. Substituting Eq. (22) into
Eq. (21) and using equations Eq. (7) and (10) for κ and η,
and Eq. (13) for ρ we find

β2 =
(2ρ)3

ν
. (23)

According to this dispersion relation, the quantity β di-
verges when ν → 0. This result is due to the fact that
ν = 0 corresponds to the exact resonance with the wake,
when the impedance Z = ∞. Comparing with the correct
dispersion relation Eq. (19), we see that the retardation ef-
fectively detunes and broadens the resonance in Eq. (23)
changing ν → ν − iβ, and effectively eliminates the diver-
gence at the resonance.
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